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Bayesian estimator is a commonly used statistical optimization technique for
"nite element model updating. This paper presents a modi"ed Bayesian estimator
and discusses its unbiasedness, e$ciency, learning ability and robustness. The main
di!erences from other estimators, for instance, the least-squares method, are
shown. The new Bayesian estimator can also be used as a multi-objective,
multi-design variable optimization method. An example is presented to
demonstrate its features.
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1. INTRODUCTION

Finite element models, in general are of uncertainties and model errors. This is
especially true in the case where complex structures are modelled. If the
experimental results of the real physical structure are available, it is recommended
to update the "nite element model with experimental data. The result of updating
by means of experimental data is a "nite element model that is more reliable for
further predictions. Modal analysis data or measured response functions are very
well suited to this purpose. It is, however, impossible and unnecessary that the
numerical results should be identical with the experimental results, because (1)
experimental results are noise corrupted; (2) "nite element models are always an
approximation of the physical reality; (3) damping is often neglected in calculation,
etc.

The principle of "nite element model updating is to compare the computed
results with the measured results from the real structure. A number of parameters in
the "nite element model are selected and tuned in such a way that the computed
output matches the measured output. The correlation between the experimental
output and the numerical output is obtained by minimization of a cost function
which contains the di!erences between both outputs. From a mathematical point of
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view, the di$culty with updating is that the relation between the output column MyN
(dimension n]1) and the parameter column MxN (dimension m]1) is nearly always
non-linear. This means that updating the parameter values from an initial value to
a "nal estimate has to be done in an iterative way. The value of the computed
output column MyN for new parameter values can be evaluated with a Taylor
expansion at the initial values My

0
N and Mx

0
N. The Taylor expansion is usually

cut-o! after the linear term:

MyN"My
0
N#[S] (MxN!Mx

0
N) . (1a)

The n]m matrix [S] that appears in the linear term is called the sensitivity
matrix. This matrix contains the partial derivatives of the output components for
the di!erent parameters. For sensitivity analysis-based model updating, if the n]m
sensitivity matrix is rank full, there are two cases which should be dealt with
di!erently: in the case of mfn, the reasonable objective is that the parameters to be
identi"ed should converge to their true values in the probabilistic sense: if n(m,
there are numerous solutions, among which there is an optimal solution in the
least-squares sense. The success of the updating is highly dependent on
the numerical condition of the sensitivity matrix. The numerical stability and hence
the robustness of the updating can be improved by applying the Bayesian estimator
algorithm presented in this paper.

Reference [1] might be the "rst paper on statistical model updating method.
Reference [2] also discussed statistical model updating procedure. This paper "rst
derives the statistical optimization algorithm in a di!erent way. Then the
estimation unbiasedness and robustness of the algorithm are discussed. Finally, the
estimation e$ciency is illustrated with an example.

2. MATHEMATICAL MODEL

Model updating implies an existing model. Suppose the correct parameter values
are in the vicinity of Mx

0
N; the truncated Tailor expansion of MyN is written again as

MyN"My
0
N#[S] (MxN!Mx

0
N) , (1b)

where MxN is the updated parameter column of dimension m]1, Mx
0
N is its initial

parameter column, MyN is the n]1 column which consists of either eigenvalues, or
eigenvectors, or frequency response functions, etc., the n]1 column My

0
N is

computed using Mx
0
N; [S]"[Ly/Lx] is the sensitivity matrix of dimension n]m.

Set

MDxN"MxN!Mx
0
N, (2)

MDyN"My
e
N!MyN, (3)

where the n]1 column My
e
N is composed of measured eigenvalues, or eigenvectors,

or frequency response functions. It can be found that, if MxN approaches correct
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values, MyN will approach exact values and MDyN will approach MeN, the
measurement noise. That is,

My
e
N"MyN#MeN. (4)

It is assumed that MDxN and MeN are normally distributed with zero means and are
uncorrelated with each other.

E[MeNMeNT]"[<
y
] , E[MDxNMDxNT]"[<

x
], (5a)

EMDxN"E(DyN"0, E[MeN MDxNT]"0, (5b)

where E[ ] indicates the expectation with respect to [ ]; n]n matrix [<
y
] and

m]m matrix [<
x
] are the positive-de"nite and symmetrical covariance matrices of

MeN and [Dx] respectively. The joint probability density function is [3].

p(Dx, e)"p (x)p(y Dx)"
1

(2n)(n`m)@2J<
x
<

y

exp!
1
2

(DxT<~1
x
Dx#eT<~1

y
e). (5c)

The matrix and vector signs are omitted in the above expression. The unconditional
maximum likelihood estimation of MxN is to choose that value of MxN which
maximizes the joint probability density function evaluated at any particular
observation of MyN [4]. Given the covariance matrices ([<

y
] is determined by

experiment and [<
x
] is more or less subjectively guessed at the start), maximization

of the joint probability density function is equal to minimization of the following
cost function:

minDxT<~1
x
Dx#eT<~1

y
e. (6)

Substitution of equations (1)}(4) into equation (6) leads to the following estimator:

MxL N"Mx
0
N#[K] (My

e
N!My

0
N ), (7a)

[K]"( [S]T[<~1
y

] [S]#[<~1
x

] )~1[S]T[<~1
y

]. (7b)

Using the following matrix formula [5]:

[A]1
11

[A]
12

([A]
22
#[A]

21
[A]~1

11
[A]

12
])~1

"([A]
11
#[A]

12
[A]~1

22
[A]

21
])~1 [A]

12
[A]~1

22
,

in which [A
11

] is an (m]m) matrix, [A
12

] an (m]n) matrix. [A
21

] an (n]m)
matrix, and [A

22
] an (n]n) matrix, equation (7b) can also be written as

[K]"[<
x
][S]T ([S] [<

x
] [S]T#[<

y
])~1. (7c)
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3. THE ESTIMATION ERROR COVARIANCE MATRIX

The estimation error covariance can be derived as follows:

[<*
x
]"E[MxL !xN MxL !xNT

"E[M[<
x
][S]T ([S][<

x
] [S]T#[<

y
])~1 (y

e
!y

0
)!MDxNN

]M[<
x
] [S]T ([S] [<

x
] [S]T#[<

y
])~1 (y

e
!y

0
)!MDxNNT],

"E[M[<
x
][S]T ([S][<

x
] [S]T#[<

y
])~1 ([S]MDxN#MeN )!MDxNN

]M[<
x
] [S]T ([S] [<

x
] [S]T#[<

y
])~1 ([S]MDxN#MeN)!MDxNNT].

By noting that

E[([S]MDxN#MeN) ([S]MDxN#MeN)T]"([S][<
x
] [S]T#[<

y
]), (8)

the following equation is obtained:

[<*
x
]"[<

x
]![<

x
] [S]T ([S] [<

x
] [S]T#[<

y
])~1[S] [<

x
]

or
[<*

x
]"( [I]![K] [S]) [<

x
], (9)

where [I] is the identity matrix.

4. UNBIASEDNESS, EFFICIENCY AND ROBUSTNESS

4.1. UNBIASEDNESS

E[MDxL N]"E[MxL N!Mx
0
N]

"E[([S]T[<~1
y

][S]#[<~1
x

] )~1[S]T[<~1
y

] (My
e
N!My

0
N)]

"E[([S]T[<~1
y

][S]#[<~1
x

] )~1[S]T[<~1
y

] ([S] MDxN#MeN )]

"([S]T[<~1
y

] [S]#[<~1
x

] )~1[S]T[<~1
y

][S]E[MDxN]. (10)

It can be found that if MDxN is normally distributed with zero mean, the
estimation will not be biased.

4.2. EFFICIENCY

If the nth estimation is more e$cient than the (n!1)th estimation, the nth
estimation error covariance should be smaller than the (n!1)th estimation error
covariance. From equation (9), it can be seen that

[<*
x

] [<
x
]~1"([I]![K][S]). (11)
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Figure 1. Estimation algorithm.

If the norm DD[I]![K] [S] DD(1, the estimation is thus e$cient. With equation
(7b)

[K][S]"([S]T[<~1
y

][S]#[<~1
x

])~1[S]T[<~1
y

] [S]. (12)

It can be seen from equation (12) that the norm DD[K] [S] DD will be (1 and thus
the estimator will be e$cient if the sensitivity matrix is rank full (since the
covariance matrix [<

x
] is positive de"nite). Due to the inherent non-linearity of the

problem and the initial value dependency of the convergence rate, satisfactory
results will only be obtained after several iterations. Figure 1 shows the estimation
algorithm.

4.3. LEARNING ABILITY

As shown in Figure 1, at the start, Mx
0
N and [<

x
] are more or less subjectively

guessed values. My
0
N and the sensitivity matrix [S] can be calculated using Mx

0
N. As

[<~
y

] is known, the gain matrix [K] can be calculated next. Then the estimator
learns from MDyN the di!erence between calculated results and measured ones, and
modi"es the previous judgement. The learning ability is characterized by the gain
matrix [K], which places di!erent weightings to each element of MDyN to get
a synthesized modi"cation for Mx

0
N which can be shown by equation (7a):

xL
j
"x

0,j
#

n
+
i/1

k
ji
(y

ei
!y

i0
), j"1, 2,2,m. (13)

In general, the more sensitive the parameter, the higher the weighting. But, the
covariance matrices [<

x
] and [<

y
] are also of great importance: from equations

(7b) and (7c), it can be found that the smaller the covariance matrix [<
x
], the

smaller the gain matrix [K] and the smaller the parameter modi"cation; the
smaller the covariance matrix [<

y
], the larger the gain matrix [K] and the larger
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the parameter modi"cation. One of the ways to avoid overmodi"cation of some
more sensitive parameters, is to set much smaller variances to these parameters.

4.4. ROBUSTNESS

Setting covariance [<
y
] to zero and [<

x
] to identify matrix, we have

MDxN"[S]T ([S][S]T )~1MDyN. (14)

Zero [<
y
] implies no measurement noise. Therefore, in equation (14), My

e
N is

supposed to be exact, but is in fact noise corrupted. As we know from the learning
ability of the estimator, the smaller the covariance matrix [<

y
], the larger the

parameter modi"cation. Hence, the parameters will be overmodi"ed to reach the
unreachable &&exact'' objective, which probably results in divergence.

Setting [<
y
]"[I] and [<

x
]"R,

MDxN"([S]T[S])~1[S]TMDyN. (15)

The in"nite [<
x
] implies that no a priori knowledge is known about the

parameters, or the di!erences between initial parameters and true parameters are
supposed to be very large. As stated before, the smaller the covariance matrix [<

x
],

the smaller the parameter modi"cation. That adaptive nature is what we need when
the parameters approach their true values. However, equation (15) assumes in"nite
[<

x
], no matter how close the parameters are to their true values, which probably

results in divergence too.
Therefore, the least-squares solution, equation (14) or (15) is not so robust as the

Bayesian estimator. There are two main reasons. First, non-zero [<
y
] is correct in

physical reality. That means some calculation error should be allowable. Secondly,
the Bayesian estimator will apply more and more strict &&constraints'', smaller [<

x
],

to those parameters that approach their true values, so that overmodi"cation can
be avoided.

It is suggested that in the Bayesian estimator, the value of [<
y
] should be close to

measurement noise, the value of [<
x
] should be close to the actual situation, or

close to the required parameter variance, and this covariance can be used in the
entire iteration procedure. Of course, we can still monitor the di!erence of
covariance between two iterations, and use this di!erence as convergence criterion.

It should be pointed out that references [6, 7] proposed a method to improve the
ill-conditioning of the sensitivity matrix:

MDxN"[S]T ([S] [S]T#[e])~1MDyN. (16)

Equation (16) is obviously a special case of equation (7c) by setting [<
y
] to [e]

and [<
x
] to identify matrix.
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Figure 2. Finite element model of a satellite antenna.

TABLE 1

Resonance frequencies of initial ,nite element model

Finite Experiment Di!% Mac %
element (Hz) (Hz)

1 18)38 18)05 1)82 96)3
2 20)50 21)85 !6)18 96)0
3 33)95 32)66 3)91 60)2
4 36)97 37)71 4)96 46)9
5 39)028 40)01 !2)47 85)8
6 44)41 43)74 4)54 49)9
7 44)55 49)72 !10)40 84)0
8 47)88 45)09 6)18 25)8
9 51)00 55)06 !7)38 96)4

10 68)41 72)51 !5)65 96)8
11 77)44 80)31 !3)58 97)7
12 90)20 68)99 31)31 99)9

5. A CASE STUDY

The "nite element model of a satellite antenna is shown in Figure 2. There are
totally 38 beam elements. It was required to correlate "rst 12 computed resonance
frequencies and mode shapes with the experimental results. The problem is
a multi-objective and multi-parameter optimization problem. 12 resonance
frequencies are taken as objectives and 38 second moment of inertia I

z
for each

beam element as parameters.
Table 1 lists the calculated resonance frequencies of the initial "nite element

model, the experimental data and MAC values (MODAL ASSURANCE
CRITERION, MAC) M/

e
NTM/

a
N/(M/

e
NTM/

e
N) M/

a
NT M/

a
N, M/

a
N is computed

modes and M/
e
N is measured modes, [8]). Table 2 lists the updated results after "ve

iterations.

6. CONCLUSION

This paper derives a Bayes type of multi-objective and multi-design parameter
optimization method by maximizing a joint probability density function, and
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TABLE 2

Resonance frequencies of updated ,nite element model

Finite Experiment Di!% Mac %
element (Hz) (Hz)

1 18)03 18)05 !0)12 94)9
2 21)81 21)85 !0)20 95)8
3 32)75 32)66 0)26 89)8
4 37)55 37)71 !0)42 64)2
5 40)01 40)01 0)01 98)9
6 43)47 43)74 !0)62 94)9
7 45)37 45)09 0)62 92)4
8 49)69 49)72 !0)05 99)3
9 55)05 55)06 !0)01 97)2

10 68)69 68)69 !0)01 99)8
11 72)73 72)51 0)30 74)7
12 80)32 80)31 0)02 97)8

discusses its estimation e$ciency, unbiasedness, learning ability and robustness.
A case study shows that it is an e$cient optimization and estimation method in
engineering.
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